Enhanced contrast sensitivity confirms active compensation in blur adaptation.

نویسندگان

  • Narayanan Rajeev
  • Andrew Metha
چکیده

PURPOSE To determine the effects of defocus-induced blur adaptation on human contrast sensitivity (CS) function. METHODS Defocused (+2 D) CS was measured for spatial frequencies between 0.5 and 12 cycles per degree (cpd) before and after adaptation to +2 D blur in six subjects with normal vision. During the 30-minute adaptation period with +2 D lens, subjects were exposed to a succession of static calibrated natural images that were also used to "top-up" adaptation between postadaptation trials. RESULTS After 30 minutes of blur adaptation, CS was found to be significantly reduced at 0.5 cpd (P = 0.023), though it was enhanced at 8 cpd (P = 0.007) and 12 cpd (P = 0.005). The average sensitivity reduction at 0.5 cpd was 0.20 log(10) units, whereas enhancements were 0.09 and 0.16 log(10) units at 8 and 12 cpd, respectively. CONCLUSIONS The present study demonstrates a novel finding that 30 minutes of defocused viewing results in enhanced high spatial frequency CS. The concurrent observation of low spatial frequency CS reduction suggests that the changes are not caused by simple learning effects but are likely caused by neural adaptation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Blur adaptation: Contrast sensitivity changes and stimulus extent

A prolonged exposure to foveal defocus is well known to affect the visual functions in the fovea. However, the effects of peripheral blur adaptation on foveal vision, or vice versa, are still unclear. In this study, we therefore examined the changes in contrast sensitivity function from baseline, following blur adaptation to small as well as laterally extended stimuli in four subjects. The smal...

متن کامل

Effect of blur adaptation on blur sensitivity in myopes

Although blur adaptation in myopia has been investigated, knowledge regarding its effect on blur sensitivity remains unknown. In the present study, changes in three blur thresholds (i.e., noticeable, bothersome, and non-resolvable blur) were assessed monocularly after 1h of blur adaptation in myopes. A Badal optical system was used to present either an isolated 20/50 Snellen E or 20/50 lines of...

متن کامل

Neural adjustments to chromatic blur.

The perception of blur in images can be strongly affected by prior adaptation to blurry images or by spatial induction from blurred surrounds. These contextual effects may play a role in calibrating visual responses for the spatial structure of luminance variations in images. We asked whether similar adjustments might also calibrate the visual system for spatial variations in color. Observers a...

متن کامل

Blur Adaptation to Central Retinal Disease

Purpose The long-term, low-resolution vision experienced by individuals affected by retinal disease that causes central vision loss (CVL) may change their perception of blur through adaptation. This study used a short-term adaptation paradigm to evaluate adaptation to blur and sharpness in patients with CVL. Methods A variation of Webster's procedure was used to measure the point of subjectiv...

متن کامل

Image Enhancement Using an Adaptive Un-sharp Masking Method Considering the Gradient Variation

Technical limitations in image capturing usually impose defective, such as contrast degradation. There are different approaches to improve the contrast of an image. Among the exiting approaches, un-sharp masking is a popular method due to its simplicity in implementation and computation. There is an important parameter in un-sharp masking, named gain factor, which affects the quality of the enh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Investigative ophthalmology & visual science

دوره 51 2  شماره 

صفحات  -

تاریخ انتشار 2010